کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4943287 | 1437618 | 2017 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Evolutionary-modified fuzzy nearest-neighbor rule for pattern classification
ترجمه فارسی عنوان
طبقه بندی الگو به صورت تکاملی اصلاح شده است
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
This paper presents an improved version of the well-established k nearest neighbor (k-NN) and fuzzy NN (FNN), termed the multi-objective genetic-algorithm-modified FNN (MOGA-MFNN). The MFNN design problem is converted into a multi-modal objective maximization problem constrained by four objective functions. Thereafter, the associated parameter set of the MFNN and the feature attributes can be determined optimally and automatically via the non-dominated sorting genetic algorithm II. We introduce two new objective functions termed the Margin-I and Margin-II, which are used to improve the generalization capability of the MFNN for the unknown data, along with two existing performance functions: the geometric mean and the area under the receiver-operated characteristic curve for the training accuracy. Moreover, we proposed a novel data-dependent weight-assignment technique for local class membership functions of the MFNN. The technique enables the MFNN to determine its local neighbors adaptively through the MOGA algorithm. To expedite the classification, the MOGA-MFNN is implemented on a graphical processing unit (GPU), which significantly increases the computation speed. Furthermore, the local class-membership function of the MFNN can be computed in advance, rather than delaying it to the classification stage. This again can improve the classification speed. The MOGA-MFNN is evaluated on 20 datasets obtained from the repository of the University of California, Irvine (UCI). The experiments with rigorous statistical significance tests demonstrate that the proposed method performs competitively with the existing methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 88, 1 December 2017, Pages 258-269
Journal: Expert Systems with Applications - Volume 88, 1 December 2017, Pages 258-269
نویسندگان
Peyman Hosseinzadeh Kassani, Andrew Beng Jin Teoh, Euntai Kim,