کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4943394 | 1437632 | 2017 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Learning general model for activity recognition with limited labelled data
ترجمه فارسی عنوان
مدل عمومی یادگیری برای شناسایی فعالیت با اطلاعات محدود شده با برچسب
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
به رسمیت شناختن فعالیت مدل عمومی، همکاری آموزشی،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
Activity recognition has been a hot topic for decades, from the scientific research to the development of off-the-shelf commercial products. Since people perform the activities differently, to avoid overfitting, building a general model with activity data of various users is required before the deployment for personal use. However, annotating a large amount of activity data is expensive and time-consuming. In this paper, we build a general model for activity recognition with a limited amount of labelled data. We combine Latent Dirichlet Allocation (LDA) and AdaBoost to jointly train a general activity model with partially labelled data. After that, when AdaBoost is used for online prediction, we combine it with graphical models (such as HMM and CRF) to exploit the temporal information in human activities to smooth out the accidental misclassifications. Experiments with publicly available datasets show that we are able to obtain the accuracy of more than 90% with 1% labelled data.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 74, 15 May 2017, Pages 19-28
Journal: Expert Systems with Applications - Volume 74, 15 May 2017, Pages 19-28
نویسندگان
Jiahui Wen, Zhiying Wang,