کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4943420 1437634 2017 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Personness estimation for real-time human detection on mobile devices
ترجمه فارسی عنوان
برآورد شخصیت برای تشخیص انسان در زمان واقعی در دستگاه های تلفن همراه
کلمات کلیدی
تشخیص انسان، پیشنهادات تشخیص شیب معمولی، ویژگی های رنگ، مدل مبتنی بر جزء ناپایدار
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی
One aim of detection proposal methods is to reduce the computational overhead of object detection. However, most of the existing methods have significant computational overhead for real-time detection on mobile devices. A fast and accurate proposal method of human detection called personness estimation is proposed, which facilitates real-time human detection on mobile devices and can be effectively integrated into part-based detection, achieving high detection performance at a low computational cost. Our work is based on two observations: (i) normed gradients, which are designed for generic objectness estimation, effectively generate high-quality detection proposals for the person category; (ii) fusing the normed gradients with color attributes improves the performance of proposal generation for human detection. Thus, the candidate windows generated by the personness estimation will very likely contain human subjects. The human detection is then guided by the candidate windows, offering high detection performance even when the detection task terminates prior to completion. This interruptible detection scheme, called anytime detection, enables real-time human detection on mobile devices. Furthermore, we introduce a new evaluation methodology called time-recall curves to practically evaluate our approach. The applicability of our proposed method is demonstrated in extensive experiments on a publicly available dataset and a real mobile device, facilitating acquisition and enhancement of portrait photographs (e.g. selfie) on widespread mobile platforms.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 72, 15 April 2017, Pages 130-138
نویسندگان
, , ,