کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4943490 1437627 2017 36 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
SCoR: A Synthetic Coordinate based Recommender system
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
SCoR: A Synthetic Coordinate based Recommender system
چکیده انگلیسی
Recommender systems try to predict the preferences of users for specific items, based on an analysis of previous consumer preferences. In this paper, we propose SCoR, a Synthetic Coordinate based Recommendation system which is shown to outperform the most popular algorithmic techniques in the field, approaches like matrix factorization and collaborative filtering. SCoR assigns synthetic coordinates to nodes (users and items), so that the distance between a user and an item provides an accurate prediction of the user's preference for that item. The proposed framework has several benefits. It is parameter free, thus requiring no fine tuning to achieve high performance, and is more resistance to the cold-start problem compared to other algorithms. Furthermore, it provides important annotations of the dataset, such as the physical detection of users and items with common and unique characteristics as well as the identification of outliers. SCoR is compared against nine other state-of-the-art recommender systems, sever of them based on the well known matrix factorization and two on collaborative filtering. The comparison is performed against four real datasets, including a brief version of the dataset used in the well known Netflix challenge. The extensive experiments prove that SCoR outperforms previous techniques while demonstrating its improved stability and high performance.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 79, 15 August 2017, Pages 8-19
نویسندگان
, , ,