کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4943499 1437627 2017 37 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Application of mutation operators to flower pollination algorithm
ترجمه فارسی عنوان
استفاده از اپراتورهای جهش برای الگوریتم گرده افشانی گل
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی
Flower pollination algorithm (FPA) is a recent addition to the field of nature inspired computing. The algorithm has been inspired from the pollination process in flowers and has been applied to a large spectra of optimization problems. But it has certain drawbacks which prevents its applications as a standard algorithm. This paper proposes new variants of FPA employing new mutation operators, dynamic switching and improved local search. A comprehensive comparison of proposed algorithms has been done for different population sizes for optimizing seventeen benchmark problems. The best variant among these is adaptive-Lévy flower pollination algorithm (ALFPA) which has been further compared with the well-known algorithms like artificial bee colony (ABC), differential evolution (DE), firefly algorithm (FA), bat algorithm (BA) and grey wolf optimizer (GWO). Numerical results show that ALFPA gives superior performance for standard benchmark functions. The algorithm has also been subjected to statistical tests and again the performance is better than the other algorithms.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 79, 15 August 2017, Pages 112-129
نویسندگان
, ,