کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4943553 | 1437635 | 2017 | 39 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Three-stage performance modeling using DEA-BPNN for better practice benchmarking
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper proposes an innovative three-stage model using data envelopment analysis (DEA) and backpropagation neural network (BPNN) for supporting 'better practice' benchmarking as contrasted with the traditional 'best practice' benchmarking. Research has shown that DEA models have the capability of setting optimal goals, but the drawback of the standard DEA approach is its inability to propose actionable targets necessary for incremental improvement. Overcoming the shortfalls of DEA and its superiority-driven practices, the neural network approach accommodates stepwise improvement through adaptive learning and prediction capability. Consequently, the proposed three-stage model is capable of generating feasible improvement options for managers as an intelligent decision support tool. At its core, the innovative approach provides a sound methodological foundation for shaping a 'better practice' paradigm and contributes to the literature through methodological advancement. The effectiveness of the model is empirically tested through the use of data from the healthcare industry, and the results confirm a practical utility of the model.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 71, 1 April 2017, Pages 429-441
Journal: Expert Systems with Applications - Volume 71, 1 April 2017, Pages 429-441
نویسندگان
He-Boong Kwon, Jon H. Marvel, James Jungbae Roh,