کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4943658 1437637 2017 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Mining erasable itemsets with subset and superset itemset constraints
ترجمه فارسی عنوان
اقلام پاک کننده معدن با محدودیت های اقلام زیر مجموعه و زیر مجموعه
کلمات کلیدی
داده کاوی، آیتم های پاک کننده محدودیت زیر مجموعه و سوپرس تکنیک های هرس کردن
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی
Erasable itemset (EI) mining, a branch of pattern mining, helps managers to establish new plans for the development of new products. Although the problem of mining EIs was first proposed in 2009, many efficient algorithms for mining these have since been developed. However, these algorithms usually require a lot of time and memory usage. In reality, users only need a small number of EIs which satisfy a particular condition. Having this observation in mind, in this study we develop an efficient algorithm for mining EIs with subset and superset itemset constraints (C0 ⊆ X ⊆ C1). Firstly, based on the MEI (Mining Erasable Itemsets) algorithm, we present the MEIC (Mining Erasable Itemsets with subset and superset itemset Constraints) algorithm in which each EI is checked with regard to the constraints before being added to the results. Next, two propositions supporting quick pruning of nodes that do not satisfy the constraints are established. Based on these, we propose an efficient algorithm for mining EIs with subset and superset itemset constraints (called pMEIC - p: pruning). The experimental results show that pMEIC outperforms MEIC in terms of mining time and memory usage.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 69, 1 March 2017, Pages 50-61
نویسندگان
, , , , ,