کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4943713 1437639 2017 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Quantum inspired evolutionary algorithm for ordering problems
ترجمه فارسی عنوان
الگوریتم تکاملی الگوریتم کوانتومی برای سفارش مشکلات
کلمات کلیدی
الگوریتم تکاملی الهام گرفته از کوانتومی، سفارش مشکل بهینه سازی، کمی کوانتومی مشکل مسیریابی خودرو
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی
This paper proposes a new quantum-inspired evolutionary algorithm for solving ordering problems. Quantum-inspired evolutionary algorithms based on binary and real representations have been previously developed to solve combinatorial and numerical optimization problems, providing better results than classical genetic algorithms with less computational effort. However, for ordering problems, order-based genetic algorithms are more suitable than those with binary and real representations. This is because specialized crossover and mutation processes are employed to always generate feasible solutions. Therefore, this work proposes a new quantum-inspired evolutionary algorithm especially devised for ordering problems (QIEA-O). Two versions of the algorithm have been proposed. The so-called pure version generates solutions by using the proposed procedure alone. The hybrid approach, on the other hand, combines the pure version with a traditional order-based genetic algorithm. The proposed quantum-inspired order-based evolutionary algorithms have been evaluated for two well-known benchmark applications - the traveling salesman problem (TSP) and the vehicle routing problem (VRP) - as well as in a real problem of line scheduling. Numerical results were obtained for ten cases (7 VRP and 3 TSP) with sizes ranging from 33 to 101 stops and 1 to 10 vehicles, where the proposed quantum-inspired order-based genetic algorithm has outperformed a traditional order-based genetic algorithm in most experiments.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Expert Systems with Applications - Volume 67, January 2017, Pages 71-83
نویسندگان
, , ,