کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
494479 862796 2016 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Group Bayesian personalized ranking with rich interactions for one-class collaborative filtering
ترجمه فارسی عنوان
رتبه بندی شخصی شده بیزی گروهی با تداخلات غنی برای فیلتر مشترک درجه یک
کلمات کلیدی
فیلتر مشترک درجه یک ؛ بازخورد ضمنی. گروه ترجیح دو به دو. مجموعه موارد
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

Both researchers and practitioners in the field of collaborative filtering have shown keen interest to user behaviors of the “one-class” feedback form such as transactions in e-commerce and “likes” in social networks. This recommendation problem is termed as one-class collaborative filtering (OCCF). In most of the previous work, a pairwise preference assumption called Bayesian personalized ranking (BPR) was empirically proved to be able to exploit such one-class data well. In one of the most recent work, an upgraded model called group preference based BPR (GBPR) leverages the group preference and obtains better performance.In this paper, we go one step beyond GBPR, and propose a new and generic assumption, i.e., group Bayesian personalized ranking with rich interactions (GBPR+). In our GBPR+, we adopt a set of items instead of one single item as used in GBPR, which is expected to introduce rich interactions. GBPR is a special case of our GPBR+ when the item set contains only one single item. We study the empirical performance of our GBPR+ with several state-of-the-art methods on four real-world datasets, and find that our GPBR+ can generate more accurate recommendations.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 207, 26 September 2016, Pages 501–510
نویسندگان
, ,