کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4945209 1438414 2017 29 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Inference procedures and engine for probabilistic argumentation
ترجمه فارسی عنوان
روش استنتاج و موتور برای استدلال احتمالاتی
کلمات کلیدی
استدلال احتمالاتی، شبکه های بیزی، روش های استنتاج، موتور معقول، احتمال فاصله،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی
Probabilistic Argumentation (PA) is a recent line of research in AI aiming to combine the strengths of argumentation and probabilistic reasoning. Though several models of PA have been proposed, the development of practical applications is still hindered by the lack of inference procedures and reasoning engines. In this paper, we present a reduction method to compute a recently proposed model of PA called PABA. Using the method we design inference procedures to compute the credulous semantics, the ideal semantics and the grounded semantics for a general class of PABA frameworks, that we refer to as Bayesian PABA frameworks. We also show that, though restricting to Bayesian PABA frameworks, the inference procedures can be used to compute other PA models thanks to simple translations. Finally, we implement the inference procedures to obtain a multi-semantics engine for probabilistic argumentation and demonstrate its usage.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Approximate Reasoning - Volume 90, November 2017, Pages 163-191
نویسندگان
,