کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4945243 | 1438419 | 2017 | 20 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Approximation enhancement for stochastic Bayesian inference
ترجمه فارسی عنوان
افزایش تقریبی برای نتیجه استیصال بیسین
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
Advancements in autonomous robotic systems have been impeded by the lack of a specialized computational hardware that makes real-time decisions based on sensory inputs. We have developed a novel circuit structure that efficiently approximates naïve Bayesian inference with simple Muller C-elements. Using a stochastic computing paradigm, this system enables real-time approximate decision-making with an area-energy-delay product nearly one billion times smaller than a conventional general-purpose computer. In this paper, we propose several techniques to improve the approximation of Bayesian inference by reducing stochastic bitstream autocorrelation. We also evaluate the effectiveness of these techniques for various naïve inference tasks and discuss hardware considerations, concluding that these circuits enable approximate Bayesian inferences while retaining orders-of-magnitude hardware advantages compared to conventional general-purpose computers.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Approximate Reasoning - Volume 85, June 2017, Pages 139-158
Journal: International Journal of Approximate Reasoning - Volume 85, June 2017, Pages 139-158
نویسندگان
Joseph S. Friedman, Jacques Droulez, Pierre Bessière, Jorge Lobo, Damien Querlioz,