کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4946050 | 1439266 | 2017 | 42 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Evaluation of e-commerce websites: An integrated approach under a single-valued trapezoidal neutrosophic environment
ترجمه فارسی عنوان
ارزیابی وب سایت های تجارت الکترونیک: یک رویکرد یکپارچه تحت محدوده نوتروسیفیک تراپزی تک محتوا
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
E-commerce website evaluation is recognized as a complex multi-criteria decision-making (MCDM) problem involving vast amounts of imprecise and inconsistent evaluation data. Single-valued trapezoidal neutrosophic numbers (SVTNNs), which are elements in single-valued trapezoidal neutrosophic sets (SVTNSs), have a strong capacity to model such complex evaluation information. However, only few studies simultaneously consider the imprecise and inconsistent information inherent in the evaluation data. Moreover, much literature overlooks the different priority levels and interrelationships among criteria. To bridge this gap, this paper outlines a novel integrated decision system consisting of the following three modules: (1) information acquisition; (2) the single-valued trapezoidal neutrosophic decision making trial and evaluation laboratory (SVTN-DEMATEL) module; and (3) the integration module. In this study, we used the information acquisition module to gather the SVTNN information provided by experts, applied the SVTN-DEMATEL module to analyze the causal relationships among criteria, and proposed the integration module for information fusion with consideration of interdependencies and different priority levels of criteria. Furthermore, we conducted a case study to illustrate the effectiveness and feasibility of the proposal along with the sensitivity and comparison analyses to verify its stability and superiority. Finally, conclusions and future research directions were drawn.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Knowledge-Based Systems - Volume 135, 1 November 2017, Pages 44-59
Journal: Knowledge-Based Systems - Volume 135, 1 November 2017, Pages 44-59
نویسندگان
Liang Ruxia, Wang Jianqiang, Zhang Hongyu,