کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4946164 1439281 2017 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Region scalable active contour model with global constraint
ترجمه فارسی عنوان
منطقه کنتور مقیاس پذیر فعال منطقه با محدودیت جهانی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی
Existing Active Contour methods suffer from the deficiencies of initialization sensitivity, slow convergence, and being insufficient in the presence of image noise and inhomogeneity. To address these problems, this paper proposes a region scalable active contour model with global constraint (RSGC). The energy function is formulated by incorporating local and global constraints. The local constraint is a region scalable fitting term that draws upon local region information under controllable scales. The global constraint is constructed through estimating the global intensity distribution of image content. Specifically, the global intensity distribution is approximated with a Gaussian Mixture Model (GMM) and estimated by Expectation Maximization (EM) algorithm as a prior. The segmentation process is implemented through optimizing the improved energy function. Comparing with two other representative models, i.e. region-scalable fitting model (RSF) and active contour model without edges (CV), the proposed RSGC model achieves more efficient, stable and precise results on most testing images under the joint actions of local and global constraints.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Knowledge-Based Systems - Volume 120, 15 March 2017, Pages 57-73
نویسندگان
, , , ,