کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4946170 | 1439281 | 2017 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Two-phase network generation towards within-network classifiers evaluation
ترجمه فارسی عنوان
نسل دو مرحله ای برای ارزیابی طبقه بندی های داخل شبکه
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
نسل شبکه، الگوریتم ژنتیک، طبقه بندی های درون شبکه،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
Within-network classifiers have been widely used to predict unknown data in networks. In order to evaluate the performance of existing classifiers, it is essential to generate synthetic networks with various properties. However, conventional network generation methods become ineffective under this scenario, since they are unable to produce node labels, exert topological constraints, or provide stable generation performance. In this paper, we propose a novel network generation method for evaluating within-network classifiers, which consists of two generation phases. In the first phase of topology generation, network topology can be obtained by incorporating any existing topology generation models. In the second phase of label generation, we model the problem as a multi-objective optimization. Specifically, we prove that generating node labels over an existing topology conforming homophily constraint is NP-hard, and devise a genetic algorithm based strategy for node label generation. Extensive experiments demonstrate that our method can produce synthetic networks with stable properties, and ensure that the network topology is fixed and label parameters take effect independently, thus making it sufficient for evaluating the sensitivity of classifiers against different parameters.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Knowledge-Based Systems - Volume 120, 15 March 2017, Pages 173-185
Journal: Knowledge-Based Systems - Volume 120, 15 March 2017, Pages 173-185
نویسندگان
Le Li, Junyi Xu, Xiang Zhao, Weidong Xiao, Shengze Hu,