کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4946356 1439288 2016 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
SalesExplorer: Exploring sales opportunities from white-space customers in the enterprise market
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
SalesExplorer: Exploring sales opportunities from white-space customers in the enterprise market
چکیده انگلیسی
This paper presents SalesExplorer, a new recommendation algorithm to address “white-space” customer issue in the commercial sales and services segment. To predict the interests of customers who are new to a product category, we propose a statistical inference method using customers' existing purchase records from other product categories, a Probabilistic Latent Semantic Analysis (PLSA)-based transfer learning method using customers' business profile content, and a kernel logistic regression-based model which combines these two recommendations to produce the final results with higher accuracy. Experimental study using real-world enterprise sales data demonstrates that, comparing with a baseline and two state-of-the-art methods, the proposed combinatorial algorithm improves recommendation accuracy by 32.14%, 13.13% and 9.85%, respectively.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Knowledge-Based Systems - Volume 113, 1 December 2016, Pages 51-60
نویسندگان
, , , ,