کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4946356 | 1439288 | 2016 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
SalesExplorer: Exploring sales opportunities from white-space customers in the enterprise market
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper presents SalesExplorer, a new recommendation algorithm to address “white-space” customer issue in the commercial sales and services segment. To predict the interests of customers who are new to a product category, we propose a statistical inference method using customers' existing purchase records from other product categories, a Probabilistic Latent Semantic Analysis (PLSA)-based transfer learning method using customers' business profile content, and a kernel logistic regression-based model which combines these two recommendations to produce the final results with higher accuracy. Experimental study using real-world enterprise sales data demonstrates that, comparing with a baseline and two state-of-the-art methods, the proposed combinatorial algorithm improves recommendation accuracy by 32.14%, 13.13% and 9.85%, respectively.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Knowledge-Based Systems - Volume 113, 1 December 2016, Pages 51-60
Journal: Knowledge-Based Systems - Volume 113, 1 December 2016, Pages 51-60
نویسندگان
Dongsheng Li, Yaoping Ruan, Qin Lv, Li Shang,