کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4946450 | 1439287 | 2016 | 23 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
KNN-based Kalman filter: An efficient and non-stationary method for Gaussian process regression
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The traditional Gaussian process (GP) regression is often deteriorated when the data set is large-scale and/or non-stationary. To address these challenging data properties, we propose a K-Nearest-Neighbor-based Kalman filter for Gaussian process regression (KNN-KFGP). Firstly, we design a test-input-driven KNN mechanism to group the training set into a number of small collections. Secondly, we use the latent function values of these collections as the unknown states and then construct a novel state space model with GP prior. Thirdly, we explore Kalman filter on this state space model to efficiently filter out the latent function values for prediction. As a result, our KNN-KFGP framework can effectively alleviate the heavy computation load of GP with recursive Bayesian inference, especially when the data set is large-scale. Moreover, our KNN mechanism helps each test point to find its strongly-correlated local training subset, and thus our KNN-KFGP can model non-stationarity in a flexible manner. Finally, we compare our KNN-KFGP to several related works and show its superior performance on a number of synthetic and real-world data sets.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Knowledge-Based Systems - Volume 114, 15 December 2016, Pages 148-155
Journal: Knowledge-Based Systems - Volume 114, 15 December 2016, Pages 148-155
نویسندگان
Yali Wang, Brahim Chaib-draa,