کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4946678 1439412 2017 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Recursive least mean p-power Extreme Learning Machine
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Recursive least mean p-power Extreme Learning Machine
چکیده انگلیسی
As real industrial processes have measurement samples with noises of different statistical characteristics and obtain the sample one by one usually, on-line sequential learning algorithms which can achieve better learning performance for systems with noises of various statistics are necessary. This paper proposes a new online Extreme Learning Machine (ELM, of Huang et al.) algorithm, namely recursive least mean p-power ELM (RLMP-ELM). In RLMP-ELM, a novel error criterion for cost function, namely the least mean p-power (LMP) error criterion, provides a mechanism to update the output weights sequentially. The LMP error criterion aims to minimize the mean p-power of the error that is the generalization of the mean square error criterion used in the ELM. The proposed on-line learning algorithm is able to provide on-line predictions of variables with noises of different statistics and obtains better performance than ELM and online sequential ELM (OS-ELM) while the non-Gaussian noises impact the processes. Simulations are reported to demonstrate the performance and effectiveness of the proposed methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neural Networks - Volume 91, July 2017, Pages 22-33
نویسندگان
, , , ,