کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4946778 | 1439419 | 2016 | 30 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A neurodynamic approach to convex optimization problems with general constraint
ترجمه فارسی عنوان
یک رویکرد نورو دینامیک به مشکلات بهینه سازی محدب با محدودیت عمومی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
This paper presents a neurodynamic approach with a recurrent neural network for solving convex optimization problems with general constraint. It is proved that for any initial point, the state of the proposed neural network reaches the constraint set in finite time, and converges to an optimal solution of the convex optimization problem finally. In contrast to the existing related neural networks, the convergence rate of the state of the proposed neural network can be calculated quantitatively via the Åojasiewicz exponent under some mild assumptions. As applications, we estimate explicitly some Åojasiewicz exponents to show the convergence rate of the state of the proposed neural network for solving convex quadratic optimization problems. And some numerical examples are given to demonstrate the effectiveness of the proposed neural network.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neural Networks - Volume 84, December 2016, Pages 113-124
Journal: Neural Networks - Volume 84, December 2016, Pages 113-124
نویسندگان
Sitian Qin, Yadong Liu, Xiaoping Xue, Fuqiang Wang,