کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4946901 | 1439559 | 2017 | 36 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Converting SVDD scores into probability estimates: Application to outlier detection
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
To enable post-processing, the output of a support vector data description (SVDD) should be transformed into a calibrated probability, as it can be done for SVM. But standard SVDD only estimate a single level set and do not provide such probabilities. We present a method for estimating these probabilities from SVDD scores. The first step of our approach uses a generalization of the SVDD model that estimate simultaneously various coherent level sets. Then we introduce two calibration mechanisms for converting these level sets into probabilities. A synthetic dataset and datasets from the UCI repository are used to compare the performance of our method against a robust kernel density estimator in an outlier detection task, illustrating the interest of our approach.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 268, 13 December 2017, Pages 64-75
Journal: Neurocomputing - Volume 268, 13 December 2017, Pages 64-75
نویسندگان
Meriem El Azami, Carole Lartizien, Stéphane Canu,