کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4946971 | 1439561 | 2017 | 26 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
CNN-based edge filtering for object proposals
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Recent advances in image-based object recognition have exploited object proposals to speed up the detection process by reducing the search space. In this paper, we present a novel idea that utilizes true objectness and semantic image filtering (retrieved within the convolutional layers of a Convolutional Neural Network) to propose effective region proposals. Information learned in fully convolutional layers is used to reduce the number of proposals and enhance their localization by producing highly accurate bounding boxes. The greatest benefit of our method is that it can be integrated into any existing approach exploiting edge-based objectness to achieve consistently high recall across various intersection over union thresholds. Experiments on PASCAL VOC 2007 and ImageNet datasets demonstrate that our approach improves two existing state-of-the-art models with significantly high margins and pushes the boundaries of object proposal generation.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 266, 29 November 2017, Pages 631-640
Journal: Neurocomputing - Volume 266, 29 November 2017, Pages 631-640
نویسندگان
Muhammad Adeel Waris, Alexandros Iosifidis, Moncef Gabbouj,