کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4946985 1439560 2017 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A modified version of Helmholtz machine by using a Restricted Boltzmann Machine to model the generative probability of the top layer
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
A modified version of Helmholtz machine by using a Restricted Boltzmann Machine to model the generative probability of the top layer
چکیده انگلیسی
The Helmholtz machine is an unsupervised deep neural network with different bottom-up recognition weights and top-down generative weights, which attempts to build probability density models of sensory inputs. The recognition weights are used to determine the recognition probability of each unit from bottom layer to top layer and the generative weights are used to determine the generative probability of each unit from top layer to bottom layer. The model parameters can be gained by minimizing the sum of the Kullback-Leibler divergence between generative and recognition distributions of all units. In this paper, we proposed a modified Helmholtz machine by adding an additional hidden layer on the top layer of the Helmholtz machine, which is used to model the generative probability of the top layer. The additional added hidden layer provides 'complementary prior' to the original top layer and can eliminate the 'explaining away effects' to make the Helmholtz machine fitting sensory inputs much better. The experimental results of new algorithm on various data sets show that the modified Helmholtz machine learns better generative models.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 267, 6 December 2017, Pages 1-17
نویسندگان
, , , ,