کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4947018 1439560 2017 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An efficient unconstrained facial expression recognition algorithm based on Stack Binarized Auto-encoders and Binarized Neural Networks
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
An efficient unconstrained facial expression recognition algorithm based on Stack Binarized Auto-encoders and Binarized Neural Networks
چکیده انگلیسی
Although deep learning has achieved good performances in many pattern recognition tasks, the over-fitting problem is still a serious issue for training deep networks containing large sets of parameters with limited labeled data. In this work, Binarized Auto-encoders (BAEs) and Stacked Binarized Auto-encoders (Stacked BAEs) are proposed to learn a kind of domain knowledge from a large-scale unlabeled facial dataset. By transferring the knowledge to another Binarized Neural Networks (BNNs) based supervised learning task with limited labeled data, the performance of the BNNs can be improved. A real-world facial expression recognition system is constructed by combining an unconstrained face normalization method, a variant of LBP descriptor, BAEs and BNNs. The experiment result shows that the whole system achieves good performance on the Static Facial Expressions in the Wild (SFEW) benchmark with minimal hardware requirements and lower memory and computation costs.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 267, 6 December 2017, Pages 385-395
نویسندگان
, , ,