کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4947084 1439564 2017 41 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Softmax exploration strategies for multiobjective reinforcement learning
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Softmax exploration strategies for multiobjective reinforcement learning
چکیده انگلیسی
Despite growing interest over recent years in applying reinforcement learning to multiobjective problems, there has been little research into the applicability and effectiveness of exploration strategies within the multiobjective context. This work considers several widely-used approaches to exploration from the single-objective reinforcement learning literature, and examines their incorporation into multiobjective Q-learning. In particular this paper proposes two novel approaches which extend the softmax operator to work with vector-valued rewards. The performance of these exploration strategies is evaluated across a set of benchmark environments. Issues arising from the multiobjective formulation of these benchmarks which impact on the performance of the exploration strategies are identified. It is shown that of the techniques considered, the combination of the novel softmax-epsilon exploration with optimistic initialisation provides the most effective trade-off between exploration and exploitation.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 263, 8 November 2017, Pages 74-86
نویسندگان
, , ,