کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4947152 | 1439567 | 2017 | 29 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Non-weighted Hâ state estimation for discrete-time switched neural networks with persistent dwell time switching regularities based on Finsler's lemma
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this study, the state estimation and Hâ control problem for discrete-time switched neural networks with mode-dependent time-varying delays has been studied with persistent dwell time (PDT) switching regularities. The phenomenon of PDT, existing for the designed estimator of underlying switched neural networks are characterized by introducing a Bernoulli distributed white sequence. The main aim of the addressed problem is to design mode dependent state estimators such that the dynamics of the estimation error is exponentially stable with an expected decay rate and satisfies the prescribed Hâ performance constraint. Sufficient conditions are established for the occurence of the desired filter to ensure the mean-square exponential stability of the augmented system by using the generalized Finsler's lemma and then the full-order filter parameters are presented in terms of solutions to a set of linear matrix inequality (LMI) conditions. Finally, simulation results are given to explain the usefulness of the proposed design procedure.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 260, 18 October 2017, Pages 131-141
Journal: Neurocomputing - Volume 260, 18 October 2017, Pages 131-141
نویسندگان
R. Rakkiyappan, K. Maheswari, K. Sivaranjani,