کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4947185 | 1439567 | 2017 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Unsupervised rank diffusion for content-based image retrieval
ترجمه فارسی عنوان
بازیابی نامناسب برای بازیابی تصویر مبتنی بر محتوا
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
بازیابی تصویر مبتنی بر محتوا، یادگیری بی نظیر، رتبه بندی انتشار،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
Despite the continuous development of features and mid-level representations, effectively and reliably measuring the similarity among images remains a challenging problem in image retrieval tasks. Once traditional measures consider only pairwise analysis, context-sensitive measures capable of exploiting the intrinsic manifold structure became indispensable for improving the retrieval performance. In this scenario, diffusion processes and rank-based methods are the most representative approaches. This paper proposes a novel hybrid method, named rank diffusion, which uses a diffusion process based on ranking information. The proposed method consists in a diffusion-based re-ranking approach, which propagates contextual information through a diffusion process defined in terms of top-ranked objects, reducing the computational complexity of the proposed algorithm. Extensive experiments considering a rigorous experimental protocol were conducted on six public image datasets and several different descriptors. Experimental results and comparison with state-of-the-art methods demonstrate that high effectiveness gains can be obtained, despite the low-complexity of the algorithm proposed.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 260, 18 October 2017, Pages 478-489
Journal: Neurocomputing - Volume 260, 18 October 2017, Pages 478-489
نویسندگان
Daniel Carlos Guimarães Pedronette, Ricardo da S. Torres,