کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4947211 | 1439568 | 2017 | 17 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
3D shape recognition and retrieval based on multi-modality deep learning
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
For 3D shape analysis, an effective and efficient feature is the key to popularize its applications in 3D domain where the major challenge lies in designing an effective high-level feature. The three-dimensional shape contains various useful information including visual information, geometric relationships, and other type properties. Thus the strategy of exploring these characteristics is the core of extracting effective 3D shape features. In this paper, we propose a novel 3D feature learning framework which combines different modality data effectively to promote the discriminability of uni-modal feature by using deep learning. The geometric information and visual information are extracted by Convolutional Neural Networks (CNNs) and Convolutional Deep Belief Networks (CDBNs), respectively, and then two independent Deep Belief Networks (DBNs) are employed to learn high-level features from geometric and visual features. Finally, a Restricted Boltzmann Machine (RBM) is trained for mining the deep correlations between different modalities. Extensive experiments demonstrate that the proposed framework achieves better performance.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 259, 11 October 2017, Pages 183-193
Journal: Neurocomputing - Volume 259, 11 October 2017, Pages 183-193
نویسندگان
Shuhui Bu, Lei Wang, Pengcheng Han, Zhenbao Liu, Ke Li,