کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4947250 1439573 2017 29 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A multi-relational term scheme for first story detection
ترجمه فارسی عنوان
یک طرح اصطلاحی چندگانه برای تشخیص داستان اول
کلمات کلیدی
تشخیص داستان اول، تخصیص صندوق قرض الحسنه، کاهش ویژگی، مترادف چند قطره ای
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی
First Story Detection (FSD) aims to identify the first story for an emerging event previously unreported, which is essential to practical applications in news analysis, intelligence gathering, and national security. Compared to information retrieval, text clustering, text classification, and other subject-based tasks, FSD is event-based and thus faces the challenging issues of multiple events on the same subject and the evolution of events. To tackle these challenges, several schemes for exploiting temporal information, named entity, and topic modeling, have been proposed for FSD. In this paper, we present a new term weighting scheme called LGT, which jointly models the Local element, Global element, and Topical association of each story. An unsupervised algorithm based on LGT is then devised and applied to FSD. We evaluate 4 feature reduction strategies and test our LGT scheme on an online model. Experiments show that our approach yields better results than existing baseline schemes on both retrospective and online FSD.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 254, 6 September 2017, Pages 42-52
نویسندگان
, , , , , ,