کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4947323 | 1439574 | 2017 | 16 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Multi-factors based sentence ordering for cross-document fusion from multimodal content
ترجمه فارسی عنوان
دستور چند فاکتور بر اساس سفارش برای ترکیب متقابل سند از محتوای چندجملهای
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
Organizing a coherent structure of the sentences extracted from multiple documents, guarantees the fluency and readability of the fused document. In this paper, sentence ordering problem is treated as a combinatorial optimization problem and solved with continuous Hopfield neural network (CHNN). We unify the existing factors by considering the most frequent orders temporal information, and topical relevance between local themes during overall ordering process. Specifically, ordering algorithm traverses all the local themes and locates a shortest path as the final sentence ordering. We show the results with data from Document Understanding Conferences (DUC) 2002-2005, and demonstrate the effectiveness of the developed approach compared with Random Ordering (RO), Chronological Ordering (CO), Majority Ordering (MO), and Precedence Relation Ordering (PRO).
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 253, 30 August 2017, Pages 6-14
Journal: Neurocomputing - Volume 253, 30 August 2017, Pages 6-14
نویسندگان
Yue Lin, Shi Zhenkun, Han Jiayu, Wang Sen, Chen Weitong, Zuo Wanli,