کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4947361 1439575 2017 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Visual comfort assessment for stereoscopic images based on sparse coding with multi-scale dictionaries
ترجمه فارسی عنوان
ارزیابی آسایش بصری برای تصاویر استریو اسکوپیک براساس کدگذاری ناقص با فرهنگ لغت چند منظوره
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی
Predicting the experienced visual comfort in line with human subjective perception is a non-trivial task in stereoscopic three-dimensional (3D) imaging system. For the task of 3D visual comfort assessment (VCA), an intuitive idea is to develop effective subjective assessment-like models. As one of the most widely used subjective assessment methods, the absolute category rating (ACR) requires each observer to conduct a multi-grade judgment with respect to one's subjective sensation of visual comfort. Motivated by this fact, we propose a novel VCA method for stereoscopic images based on sparse coding with multi-scale dictionaries. The main technical innovations of our proposed method are threefold. First, we construct multi-scale dictionaries that correspond to the multiple visual comfort scales in subjective assessment to serve as the prior knowledge for objective VCA. Second, we apply the sparse coding algorithm to estimate a testing sample's probabilities of belonging to each scale and also to derive multiple scale-specific visual comfort scores. Finally, by linearly combining all the scale-specific visual comfort scores with their corresponding probabilities as weights, the final visual comfort score is generated. Experimental results on two benchmark databases demonstrate that the proposed method can achieve higher consistency with human subjective perception compared with some state-of-the-art approaches.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 252, 23 August 2017, Pages 77-86
نویسندگان
, , , , ,