کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4947395 1439579 2017 34 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Using the score ratio with distance-based classifiers: A theoretical and practical study in biometric signature recognition
ترجمه فارسی عنوان
با استفاده از نسبت نمره با طبقه بندی های مبتنی بر فاصله: یک مطالعه نظری و عملی در به رسمیت شناختن امضای بیومتریک
کلمات کلیدی
نسبت امتیاز، تأیید امضا، طبقه بندی مبتنی بر فاصله،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی
The binary classification problem where an input is classified as belonging or not to a certain class, the so-called Target Class (TC), is approached here. This problem can be stated as a basic hypothesis test: X is from the TC (H0) vs. X is not from the TC (H1), where X is the classifier input. When probabilistic models are used (e.g., Hidden Markov Models or Gaussian Mixture Models), the likelihood ratio, p(X/H0)/p(X/H1), is an alternative widely used to improve the classification. However, as far as we know, this ratio is not usually applied with distance-based classifiers (e.g., Dynamic Time Warping). Following that idea, here we propose making the decision based not only on the score (“score” being the classifier output) assuming X to be from the TC (H0), but also using the score assuming X is not from the TC (H1), by means of the ratio between both scores: the score ratio. The proposal is tested in biometric person authentication using manuscript signature, with three different state-of-the-art systems based on distance classifiers. Different alternatives for applying the proposal are shown in order to reduce the computer load, should it prove necessary. Using the score ratio has led to improvements in most of the tests performed. The best verification results were achieved using our proposal, with the best ones without the score ratio being improved by an average of 22%.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 248, 26 July 2017, Pages 57-66
نویسندگان
, , ,