کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4947409 | 1439580 | 2017 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
δ-agree AdaBoost stacked autoencoder for short-term traffic flow forecasting
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Accurate and timely traffic flow forecasting is critical for the successful deployment of intelligent transportation systems. However, it is quite challenging to develop an efficient and robust forecasting model due to the inherent randomness and large variations of traffic flow. Recently, the stacked autoencoder has been proven promising for traffic flow forecasting but still exists some drawbacks in certain conditions. In this paper, a training samples replication strategy is introduced to train a series of stacked autoencoders and an adaptive boosting scheme is proposed to ensemble the trained stacked autoencoders to improve the accuracy of traffic flow forecasting. Furthermore, sufficient experiments have been conducted to demonstrate the superior performance of the proposal.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 247, 19 July 2017, Pages 31-38
Journal: Neurocomputing - Volume 247, 19 July 2017, Pages 31-38
نویسندگان
Teng Zhou, Guoqiang Han, Xuemiao Xu, Zhizhe Lin, Chu Han, Yuchang Huang, Jing Qin,