کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4947500 | 1439584 | 2017 | 21 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Urdu Nastaliq recognition using convolutional-recursive deep learning
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Recent developments in recognition of cursive scripts rely on implicit feature extraction methods that provide better results as compared to traditional hand-crafted feature extraction approaches. We present a hybrid approach based on explicit feature extraction by combining convolutional and recursive neural networks for feature learning and classification of cursive Urdu Nastaliq script. The first layer extracts low-level translational invariant features using Convolutional Neural Networks (CNN) which are then forwarded to Multi-dimensional Long Short-Term Memory Neural Networks (MDLSTM) for contextual feature extraction and learning. Experiments are carried out on the publicly available Urdu Printed Text-line Image (UPTI) dataset using the proposed hierarchical combination of CNN and MDLSTM. A recognition rate of up to 98.12% for 44-classes is achieved outperforming the state-of-the-art results on the UPTI dataset.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 243, 21 June 2017, Pages 80-87
Journal: Neurocomputing - Volume 243, 21 June 2017, Pages 80-87
نویسندگان
Saeeda Naz, Arif I. Umar, Riaz Ahmad, Imran Siddiqi, Saad B Ahmed, Muhammad I. Razzak, Faisal Shafait,