کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4947500 1439584 2017 21 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Urdu Nastaliq recognition using convolutional-recursive deep learning
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Urdu Nastaliq recognition using convolutional-recursive deep learning
چکیده انگلیسی
Recent developments in recognition of cursive scripts rely on implicit feature extraction methods that provide better results as compared to traditional hand-crafted feature extraction approaches. We present a hybrid approach based on explicit feature extraction by combining convolutional and recursive neural networks for feature learning and classification of cursive Urdu Nastaliq script. The first layer extracts low-level translational invariant features using Convolutional Neural Networks (CNN) which are then forwarded to Multi-dimensional Long Short-Term Memory Neural Networks (MDLSTM) for contextual feature extraction and learning. Experiments are carried out on the publicly available Urdu Printed Text-line Image (UPTI) dataset using the proposed hierarchical combination of CNN and MDLSTM. A recognition rate of up to 98.12% for 44-classes is achieved outperforming the state-of-the-art results on the UPTI dataset.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 243, 21 June 2017, Pages 80-87
نویسندگان
, , , , , , ,