کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4947612 1439589 2017 48 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Discriminative latent semantic feature learning for pedestrian detection
ترجمه فارسی عنوان
یادگیری ویژگی معنادار پنهان تشخیصی برای شناسایی عابر پیاده
کلمات کلیدی
تشخیص عابر پیاده، یادگیری ویژگی معانی انسانی، قدرت تبعیض آمیز،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی
Features act as a key factor in pedestrian detection task. Most widely-used ones like HOG are manually designed and hard to be adaptive, thus now more attention has been paid to the features automatically learned on data. In this paper, a novel approach of learning discriminative features is proposed, addressing two main limitations of the methods in the literature. On one hand, unlike those methods of learning features on low-level pixels, we propose to learn features via a particular sparse coding algorithm enhanced on mid-level image representation, in order to obtain higher-level latent semantics and robustness; On the other hand, those methods usually utilize label information in model training such as deformable part model (DPM) with high computation cost. Instead, we propose to extend the learning process via a maximum margin criterion, in order to better encode discriminative information directly in features by optimizing them to be close to each other if from the same class and far from each other if from different classes. Furthermore, a boosted detection framework rather than the complex DPM is adopted to achieve both high accuracy and efficiency. The proposed approach achieves promising results on several standard pedestrian detection benchmarks.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 238, 17 May 2017, Pages 126-138
نویسندگان
, ,