کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4947616 | 1439589 | 2017 | 32 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A landmark-based data-driven approach on 2.5D facial attractiveness computation
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Investigating the nature and components of face attractiveness from a computational view has become an emerging topic in facial analysis research. In this paper, a multi-view (frontal and profile view, 2.5D) facial attractiveness computational model is developed to explore how face geometry affects its attractiveness. A landmark-based, data-driven method is introduced to construct a huge dimension of three kinds of geometric facial measurements, including ratios, angles, and inclinations. An incremental feature selection algorithm is proposed to systematically select the most discriminative subset of geometric features, which are finally mapped to an attractiveness score through the application of support vector regression (SVR). On a dataset of 360 facial images pre-processed from BJUT-3D Face Database and an attractiveness score dataset collected from human raters, we show that the computational model performs well with low statistic error (MSE=0.4969) and good predictability (R2=0.5756).
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 238, 17 May 2017, Pages 168-178
Journal: Neurocomputing - Volume 238, 17 May 2017, Pages 168-178
نویسندگان
Shu Liu, Yang-Yu Fan, Zhe Guo, Ashok Samal, Afan Ali,