کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4947720 1439591 2017 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Neighborhood geometry based feature matching for geostationary satellite remote sensing image
ترجمه فارسی عنوان
تطبیق ویژگی های محدوده هندسه برای تصویر سنجش از دور ماهواره ای ژئواستریتیک
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی
In this paper, we focus on Global Self-consistent, Hierarchical, High-resolution Geography (GSHHG) database registration for remote sensing images taken from geostationary meteorological satellites. While the accuracy of feature matching is the key component. To improve it, we propose a neighborhood geometry-based feature matching scheme which includes three steps: neighborhood coding, verification and fitting. (1) Neighborhood coding represents landmarks of GSHHG as a descriptive bit-matrix, and quantifies remote sensing images to a probability-based edge map and a binary geometry-based edge map. As a result, both gradient and geometry similarity of local features in the remote sensing image and GSHHG can be measured. (2) Neighborhood verification is to encode spatial relationship among local features in neighbor, and discover outliers. (3) Neighborhood fitting fits the shorelines of GSHHG with the landmarks registered by neighborhood verification to improve recall. Experimental results on 25 pairs of newly annotated images show that the proposed method is competitive to several prior arts with respect to matching accuracy. What is more, our method is significantly more efficient than others.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 236, 2 May 2017, Pages 65-72
نویسندگان
, , , , ,