کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4947782 1439590 2017 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
HDIdx: High-dimensional indexing for efficient approximate nearest neighbor search
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
HDIdx: High-dimensional indexing for efficient approximate nearest neighbor search
چکیده انگلیسی
Fast Nearest Neighbor (NN) search is a fundamental challenge in large-scale data processing and analytics, particularly for analyzing multimedia contents which are often of high dimensionality. Instead of using exact NN search, extensive research efforts have been focusing on approximate NN search algorithms. In this work, we present “HDIdx”, an efficient high-dimensional indexing library for fast approximate NN search, which is open-source and written in Python. It offers a family of state-of-the-art algorithms that convert input high-dimensional vectors into compact binary codes, making them very efficient and scalable for NN search with very low space complexity.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 237, 10 May 2017, Pages 401-404
نویسندگان
, , , , , ,