کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4947815 | 1439597 | 2017 | 19 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Sparse-view X-ray CT reconstruction with Gamma regularization
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
By providing fast scanning with low radiation doses, sparse-view (or sparse-projection) reconstruction has attracted much research attention in X-ray computerized tomography (CT) imaging. Recent contributions have demonstrated that the total variation (TV) constraint can lead to improved solution by regularizing the underdetermined ill-posed problem of sparse-view reconstruction. However, when the projection views are reduced below certain numbers, the performance of TV regularization tends to deteriorate with severe artifacts. In this paper, we explore the applicability of Gamma regularization for the sparse-view CT reconstruction. Experiments on simulated data and clinical data demonstrate that the Gamma regularization can lead to good performance in sparse-view reconstruction.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 230, 22 March 2017, Pages 251-269
Journal: Neurocomputing - Volume 230, 22 March 2017, Pages 251-269
نویسندگان
Junfeng Zhang, Yining Hu, Jian Yang, Yang Chen, Jean-Louis Coatrieux, Limin Luo,