کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4947848 1439592 2017 26 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Group-penalized feature selection and robust twin SVM classification via second-order cone programming
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Group-penalized feature selection and robust twin SVM classification via second-order cone programming
چکیده انگلیسی
Selecting the relevant factors in a particular domain is of utmost interest in the machine learning community. This paper concerns the feature selection process for twin support vector machine (TWSVM), a powerful classification method that constructs two nonparallel hyperplanes in order to define a classification rule. Besides the Euclidean norm, our proposal includes a second regularizer that aims at eliminating variables in both twin hyperplanes in a synchronized fashion. The baseline classifier is a twin SVM implementation based on second-order cone programming, which confers robustness to the approach and leads to potentially better predictive performance compared to the standard TWSVM formulation. The proposal is studied empirically and compared with well-known feature selection methods using microarray datasets, on which it succeeds at finding low-dimensional solutions with highest average performance among all the other methods studied in this work.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 235, 26 April 2017, Pages 112-121
نویسندگان
, ,