کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4947856 1439592 2017 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An artificial neural network for solving quadratic zero-one programming problems
ترجمه فارسی عنوان
یک شبکه عصبی مصنوعی برای حل مسئله برنامه نویسی صفر درجه دوم
کلمات کلیدی
شبکه های عصبی، برنامه ریزی صفر درجه یک، تابع مشکل تکمیلی غیرخطی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی
This paper presents an artificial neural network to solve the quadratic zero-one programming problems under linear constraints. In this paper, by using the connection between integer and nonlinear programming, the quadratic zero-one programming problem is transformed into the quadratic programming problem with nonlinear constraints. Then, by using the nonlinear complementarity problem (NCP) function and penalty method this problem is transformed into an unconstrained optimization problem. It is shown that the Hessian matrix of the associated function in the unconstrained optimization problem is positive definite in the optimal point. To solve the unconstrained optimization problem an artificial neural network is used. The proposed neural network has a simple structure and a low complexity of implementation. It is shown here that the proposed artificial neural network is stable in the sense of Lyapunov. Finally, some numerical examples are given to show that the proposed model finds the optimal solution of this problem in the low convergence time.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 235, 26 April 2017, Pages 192-198
نویسندگان
, , ,