کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4947910 | 1439599 | 2017 | 8 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Pedestrian detection based on gradient and texture feature integration
ترجمه فارسی عنوان
تشخیص عابر پیاده براساس یکپارچگی ویژگی های شیب و بافت
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
In this paper, based on feature integration, we proposed a new method for pedestrian detection. Firstly, we extracted the histogram of oriented gradients (HOG) feature and local binary pattern (LBP) feature from the original images respectively. Secendly, K-singular value decomposition (K-SVD) was used to extract sparse representation features from the HOG and LBP features. Moreover, PCA was used to reduce the dimension of HOG and LBP. Finally, we combined the PCA based features and the K-SVD based sparse representation features directly for fast pedestrian detection in still images. Experimental results on two databases show that the proposed approach is effective for pedestrian detection.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 228, 8 March 2017, Pages 71-78
Journal: Neurocomputing - Volume 228, 8 March 2017, Pages 71-78
نویسندگان
Chun-Hou Zheng, Wen-Juan Pei, Qing Yan, Yan-Wen Chong,