کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4947929 | 1439599 | 2017 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A joint-L2,1-norm-constraint-based semi-supervised feature extraction for RNA-Seq data analysis
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
It is of urgency to effectively identify differentially expressed genes from RNA-Seq data. In this paper, we proposed a novel method, joint-L2,1-norm-constraint-based semi-supervised feature extraction (L21SFE), to analyze RNA-Seq data. Our scheme was shown as follows. Firstly, we constructed a graph Laplacian matrix and refined it by using the labeled samples. Our graph construction method can make full use of a large number of unlabelled samples. Secondly, we found semi-supervised optimal maps by solving a generalized eigenvalue problem. Thirdly, we solved an optimal problem via the joint L2,1-norm constraint to obtain a projection matrix. It can diminish the impact of noises and outliers by using the L2,1-norm constraint and produce more precise results. Finally, we identified differentially expressed genes based on the projection matrix. The results on simulation and real RNA-Seq data sets demonstrated the feasibility and effectiveness of our method.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 228, 8 March 2017, Pages 263-269
Journal: Neurocomputing - Volume 228, 8 March 2017, Pages 263-269
نویسندگان
Jin-Xing Liu, Dong Wang, Ying-Lian Gao, Chun-Hou Zheng, Jun-Liang Shang, Feng Liu, Yong Xu,