کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4947978 | 1439601 | 2017 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A novel infrared and visible image fusion algorithm based on shift-invariant dual-tree complex shearlet transform and sparse representation
ترجمه فارسی عنوان
یک الگوریتم تلفیقی مادون قرمز و تصویر قابل مشاهده بر مبنای شبیه سازی تغییر شکل پیچیده دوبعدی تغییر شکل و غیر مستقیم و نمایندگی اسپار
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
In this paper, a novel shift-invariant dual-tree complex shearlet transform (SIDCST) is constructed and applied to infrared and visible image fusion. Firstly, the mathematical morphology is used for the source images. Then, the images are decomposed by SIDCST to obtain the low frequency sub-band coefficients and high frequency sub-band coefficients. For the low frequency sub-band coefficients, a novel sparse representation (SR)-based fusion rule is presented. For the high frequency sub-band coefficients, a scheme based on the theory of adaptive dual-channel pulse coupled neural network (2APCNN) is presented, and the energy of edge is used for the external input of 2APCNN. Finally, the fused image is obtained by performing the inverse SIDCST. The experimental results show that the proposed approach can obtain state-of-the-art performance compared with conventional image fusion methods in terms of both objective evaluation criteria and visual quality.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 226, 22 February 2017, Pages 182-191
Journal: Neurocomputing - Volume 226, 22 February 2017, Pages 182-191
نویسندگان
Ming Yin, Puhong Duan, Wei Liu, Xiangyu Liang,