کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4948000 | 1439605 | 2017 | 27 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Saliency detection via joint modeling global shape and local consistency
ترجمه فارسی عنوان
تشخیص سلامت از طریق شکلدهی مشترک جهانی و سازگاری محلی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
تشخیص سلامت، مدل سازی مشترک، شکل شی، سازگاری محلی،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
Saliency detection is the task of locating informative regions in an image, which is a challenging task in computer vision. In contrast to the existing saliency detection models that focus on either local or global image property, an effective salient object detection method is introduced based on joint modeling global shape and local consistency. To this end, Restricted Boltzmann Machine (RBM) is utilized to model salient object shape as global image property and Conditional Random Field (CRF), on the other hand, is adopted to achieve its local consistency. In order to obtain the final saliency map, a universal framework is introduced to combine the results of RBM and CRF. Experimental results on five benchmark datasets demonstrate that the proposed saliency detection method performs favorably against the existing state-of-the-art algorithms.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 222, 26 January 2017, Pages 81-90
Journal: Neurocomputing - Volume 222, 26 January 2017, Pages 81-90
نویسندگان
Jinqing Qi, Shijing Dong, Fang Huang, Huchuan Lu,