کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4948102 1439607 2017 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Feature selection and multiple kernel boosting framework based on PSO with mutation mechanism for hyperspectral classification
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Feature selection and multiple kernel boosting framework based on PSO with mutation mechanism for hyperspectral classification
چکیده انگلیسی
Hyperspectral remote sensing sensors can capture hundreds of contiguous spectral images and provide plenty of valuable information. Feature selection and classification play a key role in the field of HyperSpectral Image (HSI) analysis. This paper addresses the problem of HSI classification from the following three aspects. First, we present a novel criterion by standard deviation, Kullback-Leibler distance, and correlation coefficient for feature selection. Second, we optimize the SVM classifier design by searching for the most appropriate value of the parameters using particle swarm optimization (PSO) with mutation mechanism. Finally, we propose an ensemble learning framework, which applies the boosting technique to learn multiple kernel classifiers for classification problems. Experiments are conducted on benchmark HSI classification data sets. The evaluation results show that the proposed approach can achieve better accuracy and efficiency than state-of-the-art methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 220, 12 January 2017, Pages 181-190
نویسندگان
, , , , , ,