کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4948195 | 1439612 | 2016 | 30 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Higher order partial least squares for object tracking: A 4D-tracking method
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Object tracking has a wide range of applications and great efforts have been spent to build the object appearance model using image features encoded in a vector as observations. Since a video or image sequence is intrinsically a multi-dimensional matrix or a high-order tensor, these methods cannot fully utilize the spatial-temporal correlations within the 2D image ensembles and inevitably lose a lot of useful information. In this paper, we propose a novel 4D object tracking method via the higher order partial least squares (HOPLS) which is a generalized multi-linear regression method. To do so, we first represent each training and testing example as a set of image instances of a target or background object. Then, we view object tracking as a multi-class classification problem and construct the 4D data matrix and 2D labeling matrix for HOPLS. Furthermore, we use HOPLS to adaptively learn low-dimensional discriminative feature subspace for object representation. Finally, a simple yet effective updating schema is used to update the object appearance model. Experimental results on challenging video sequences demonstrate the robustness and effectiveness of the proposed 4D tracking method.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 215, 26 November 2016, Pages 118-127
Journal: Neurocomputing - Volume 215, 26 November 2016, Pages 118-127
نویسندگان
Bineng Zhong, Xiangnan Yang, Yingju Shen, Cheng Wang, Tian Wang, Zhen Cui, Hongbo Zhang, Xiaopeng Hong, Duansheng Chen,