کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4948237 | 1439608 | 2017 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Modeling collinear data using double-layer GA-based selective ensemble kernel partial least squares algorithm
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Collinear and nonlinear characteristics of modeling data have to be addressed for constructing effective soft measuring models. Latent variables (LVs)-based modeling approaches, such as kernel partial least squares (KPLS), can overcome these disadvantages in certain degree. Selective ensemble (SEN) modeling can improve generalization performance of learning models further. Nevertheless, how to select SEN model's learning parameters is an important open issue. In this paper, a novel SENKPLS modeling method based on double-layer genetic algorithm (DLGA) optimization is proposed. At first, one mechanism, titled outside layer adaptive GA (AGA) optimization encoding and decoding principle, is employed to produce initial learning parameter values for KPLS-based candidate sub-models. Then, ensemble sub-models are selected and combined based on inside layer GA optimization toolbox (GAOT) and adaptive weighting fusion (AWF) algorithm. Thus, SEN models of all AGA populations are obtained. Finally, outside layer AGA optimization operations, i.e., selection, crossover and mutation processes, are repeated until the pre-set stopping criterion is satisfied. Simulation results validate the effectiveness of the proposed method as far as the synthetic data, low dimensional and high dimensional benchmark data.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 219, 5 January 2017, Pages 248-262
Journal: Neurocomputing - Volume 219, 5 January 2017, Pages 248-262
نویسندگان
Jian Tang, Jian Zhang, Zhiwei Wu, Zhuo Liu, Tianyou Chai, Wen Yu,