کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4948251 1439608 2017 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An enhanced trust prediction strategy for online social networks using probabilistic reputation features
ترجمه فارسی عنوان
یک استراتژی پیشبینی اعتماد برای شبکههای اجتماعی آنلاین با استفاده از ویژگیهای احتمالی اعتبار
کلمات کلیدی
شبکه های اجتماعی آنلاین، ویژگی های اعتبار، ویژگی های شهرت احتمالی، پیش بینی اعتماد، تجزیه و تحلیل شبکه شبکه، اطلاعات بزرگ،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی
Online Social networks have gained much prominence in the recent years such that it has become an unavoidable means of daily communication. The element of trust in social networks has been studied ever since the inception of online social networks. Trust in online social networks is extremely fragile in nature due to the virtual connections between users in the network. The level of trustworthiness of each user in a social network varies and is usually computed using reputation level of the users. This paper focuses on identifying the features that determine the trust of a user in online social networks using benchmark datasets. We propose a new probabilistic reputation feature model that is better than the raw reputation features. The enhanced trust prediction framework has been tested and validated on three benchmark datasets namely Wikipedia election dataset, Epinions dataset and Slashdot dataset. The proposed probabilistic feature enhances the overall accuracy, F1 score, and area under the ROC for the classifier results significantly. The results have been compared with other state of the art techniques and are found to be efficient.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 219, 5 January 2017, Pages 412-421
نویسندگان
, ,