کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4948304 | 1439614 | 2016 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Fusion of multiple channel features for person re-identification
ترجمه فارسی عنوان
تلفیق ویژگی های کانال چندگانه برای شناسایی فرد
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
شناسایی فرد، کانال چندگانه، همجوشی ویژگی،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
Person re-identification plays an important role for automatic search of a person's presence in a surveillance video, and feature representation is a critical and fundamental problem for person re-identification. Besides, an reliable feature representation should effectively adapt to the changes of illumination, pose, viewpoint, etc. In this paper, we propose an effective feature representation called fusion of multiple channel features (FMCF) which captures different low-level features from multiple channels of HSV color space, considering the characteristics of different color channels and fusing color, texture and correlation of spatial structure. Furthermore, it takes advantage of an overlapping strategy to eliminate contrast of local cells in an image. In addition, we apply the simple weight distance metric to measure the similarity of different images, rather than metric learning which relies on a specific feature and requires more computing resources. Finally, we apply the proposed method of FMCF on the i-LIDS Multiple-Camera Tracking Scenario(MCTS) and CUHK-01person re-identification datasets, and the experimental results demonstrate that it is more robust to the variation of visual appearance.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 213, 12 November 2016, Pages 125-136
Journal: Neurocomputing - Volume 213, 12 November 2016, Pages 125-136
نویسندگان
Xuekuan Wang, Cairong Zhao, Duoqian Miao, Zhihua Wei, Renxian Zhang, Tingfei Ye,