کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4948319 | 1439611 | 2016 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Jointly sparse neighborhood graph for multi-view manifold clustering
ترجمه فارسی عنوان
گراف مختصری چندگانه برای خوشه بندی چندبعدی چندگانه
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
آموزش چندرسانه ای، خوشه بندی منیفولد، به طور مشترک روش نادرست، انتخاب محله
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
چکیده انگلیسی
View-specific neighborhoods commonly contain class-inconsistent neighbors in graph-based multi-view learning. A key problem is to handle class-inconsistent neighbors under each view. This paper employs jointly sparse learning to filter unreliable neighbors in the union of view-specific neighborhoods, via representing each entity in a weighted sum of its neighbors under each view. The proposed jointly sparse model can be easily solved by an ADMM method. The learned jointly sparse weights can be used to construct a similarity neighborhood graph, and the new graph can be further utilized for multi-view clustering and view-specific graph preconditioning. A fast algorithm for multi-view manifold clustering is then proposed, and two preconditioning approaches are discussed for improving conformability of view-specific graphs and eventually increasing the efficiency of graph-based algorithms for multi-view learning. Numerical experiments are reported, which provide good supports to the proposed methods.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 216, 5 December 2016, Pages 28-38
Journal: Neurocomputing - Volume 216, 5 December 2016, Pages 28-38
نویسندگان
Zhenyue Zhang, Jiayun Mao,