کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4948328 | 1439611 | 2016 | 30 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Adaptive RBFNNs/integral sliding mode control for a quadrotor aircraft
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper presents a novel hierarchical control strategy based on adaptive radical basis function neural networks (RBFNNs) and double-loop integral sliding mode control (IntSMC) for the position and attitude tracing of quadrotor unmanned aerial vehicles (UAVs) subjected to sustained disturbances and parameter uncertainties. The dynamical motion equations are obtained by the Lagrange-Euler formalism. The proposed controller combines the advantage of the IntSMC with the approximation ability of arbitrary functions ensured by RBFNNs to generate a control law to guarantee the faster convergence of the state variables to their desired values in short time and compensation for the disturbances and uncertainties. Capabilities of online adaptive estimating of the unknown uncertainties and null tracking error are proved by using the Lyapunov stability theory. Simulation results, also compared with traditional PD/IntSMC algorithms and with the backstepping/nonlinear Hâ controller, verify the effectiveness and robustness of the proposed control laws.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurocomputing - Volume 216, 5 December 2016, Pages 126-134
Journal: Neurocomputing - Volume 216, 5 December 2016, Pages 126-134
نویسندگان
Shushuai Li, Yaonan Wang, Jianhao Tan, Yan Zheng,